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REVIEW ARTICLE

Measuring ultrashort laser pulses in the time-frequency domain
using frequency-resolved optical gating
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Marco A. Krumbügel, and Bruce A. Richman
Combustion Research Facility, Sandia National Labs, Livermore, California 94550

Daniel J. Kane
Southwest Sciences, Incorporated, Suite E-11, 1570 Pacheco Street, Santa Fe, New Mexico 87501

~Received 9 December 1996; accepted for publication 9 May 1997!

We summarize the problem of measuring an ultrashort laser pulse and describe in detail a technique
that completely characterizes a pulse in time: frequency-resolved optical gating. Emphasis is placed
on the choice of experimental beam geometry and the implementation of the iterative phase-retrieval
algorithm that together yield an accurate measurement of the pulse time-dependent intensity and
phase over a wide range of circumstances. We compare several commonly used beam geometries,
displaying sample traces for each and showing where each is appropriate, and we give a detailed
description of the pulse-retrieval algorithm for each of these cases. ©1997 American Institute of
Physics.@S0034-6748~97!00209-8#

I. THE PROBLEM OF MEASURING AN ULTRASHORT
LASER PULSE

The past decade has seen tremendous progress in the
development of lasers that emit ultrashort pulses.1–4 Light
pulses are approaching durations of a single optical cycle—
one to two femtoseconds (10215 s) for visible and near-IR
wavelengths. And, in addition, the use of ultrashort pulses
for both fundamental studies and applications is increasing
rapidly.5–8

As these pulses shrink in length and grow in utility, the
ability to measure them becomes increasingly important.
There are several reasons for this. First, precise knowledge
of the pulse properties is necessary for verifying theoretical
models of pulse creation.9,10 Second, in order to make even
shorter pulses, it is necessary to understand the distortions
that limit the length of currently available pulses.9,10 Third,
in experiments using these pulses, it is always important to
know at least the pulse length in order to determine the tem-
poral resolution of a given experiment. Moreover, in many
experiments—studies of molecular vibrations, for example—
additional details of the pulse’s structure play an important
role in determining the outcome of the experiment. Of par-
ticular importance is the variation of frequency during the
pulse, known as ‘‘chirp.’’ For example, chirped pulses can
cause much greater molecular photodissociation than un-
chirped pulses.6 Fourth, a new class of material-
characterization techniques is now evolving that depends
heavily on the ability to precisely characterize an ultrashort
pulse experimentally. More detailed material information can
be discerned by fully characterizing the input and output
pulses in such methods.11,12 Finally, numerous applications
have emerged for shaped ultrashort pulses,13,14 and, of
course, it is necessary to be able to measure the shape of the
pulse used in these measurements.

Fortunately, in the past five years, remarkable progress

has occurred in the development of techniques for the mea-
surement of ultrashort laser pulses. It is now routine to com-
pletely characterize the time dependence of these pulses in
the laboratory.15–20 With the most commonly used new
pulse-measurement method, frequency-resolved optical gat-
ing, ~FROG!,16–18,21–34it is now possible to measure pulses
over a wide range of wavelengths, pulse lengths, and com-
plexities and to do so in a manner that is general, robust,
accurate, and rigorous. Single-shot measurement is
straightforward.21,24,31 FROG measurements are insensitive
to noise.28,35 Feedback regarding the quality of the data vir-
tually eliminates the possibility that systematic error could
cause one pulse to mimic another.23,32,34 Indeed, internal
consistency checks in FROG even allow the correction of a
trace for many types of systematic error, even when the
source~s! of the error is unknown.34 Complex apparatus is
not necessary; FROG simply involves spectrally resolving
the signal beam of an autocorrelation measurement. As most
ultrafast laboratories already possess an autocorrelator and
spectrometer for pulse measurement, complete pulse mea-
surement using FROG requires no new apparatus. Finally, it
is also possible to measure very weak pulses: combining
FROG with spectral interferometry allows full characteriza-
tion of a pulse train containing less than one photon per pulse
on average.18

What does full characterization mean? The pulse is de-
fined by its electric field as a function of time,E(t). For the
sake of simplicity, we treat the field as linearly polarized and
therefore consider only the scalar component of it. We also
assume that the pulse separates into the product of spatial
and temporal factors, and we neglect the spatial factor.~We
will discuss the spatiotemporal measurement of a pulse
later.! The time-dependent component of the pulse can be
written:

E~ t !5Re$AI ~ t ! exp~ iv0t2 iw~ t !!%, ~1!
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where I (t) and w(t) are the time-dependent intensity and
phase of the pulse, andv0 is a carrier frequency. The time-
dependent phase contains the frequency versus time informa-
tion, and the pulse instantaneous frequency,v(t), is given
by

v~ t !5v02
dw

dt
. ~2!

Thus, a constant-phase pulse experiences no frequency varia-
tion in time. Linear variation ofw in time is simply a fre-
quency shift. But quadratic variation ofw with time repre-
sents a linear ramp of frequency versus time. Pulses with
increasing frequency versus time are said to be ‘‘positively
chirped,’’ and pulses with decreasing frequency versus time
are said to be ‘‘negatively chirped.’’ When the phase distor-
tion is simply quadratic, the chirp is said to be linear. Higher-
order terms imply nonlinear chirp.

The pulse field can equally well be written in the fre-
quency domain~neglecting the negative-frequency term!:

Ẽ~v!5AĨ ~v2v0! exp~ i w̃~v2v0!!, ~3!

whereẼ(v) is the Fourier transform ofE(t). Ĩ (v2v0) is
the spectrum andw̃(v2v0) is the spectral phase. The spec-
tral phase contains time versus frequency information, and
we now define the group delay versus frequency,t̃(v) @not
the inverse ofv(t)#, given by

t̃~v!5
dw̃

dv
. ~4!

As in the time domain, a frequency-domain constant-phase
pulse experiences no frequency variation with time~or, more
precisely, time variation with frequency!. Linear variation of
w̃(v2v0) with frequency is simply a shift in time, that is, a
delay. Quadratic variation ofw̃(v2v0) with frequency rep-
resents a linear ramp of group delay versus frequency and
corresponds to a pulse that is linearly chirped. Also, as in the
time domain, higher-order terms imply nonlinear chirp.

We desire to measureE(t) @or Ẽ(v)# completely, that is,
to measure both the intensity and phase, expressed in either
domain. We must be able to do so even when the pulse has
significant intensity structure and highly nonlinear chirp, that
is, in the general case.

Previously available technology has consisted essentially
of autocorrelators and spectrometers.36–38 The spectrometer
operates in the frequency domain and, of course, measures
the spectrum. Unfortunately, it has not been possible to mea-
sure the spectral phase. In the time domain, it has not been
possible to measure eitherI (t) or w(t) because these pulses
are so much shorter than the temporal resolution of measure-
ment devices. The main device available for time-domain
characterization of an ultrashort pulse has been the
autocorrelator,36–38 which, since no shorter event is avail-
able, uses the pulse to measure itself. Specifically, it involves
splitting the pulse into two, variably delaying one with re-
spect to the other, and spatially overlapping the two pulses in
some instantaneously responding nonlinear-optical medium,
such as a second-harmonic-generation~SHG! crystal. A SHG
crystal will produce light at twice the frequency of input
light with an intensity that is proportional to the product of

the intensities of the two input pulses. It is clear that this
yields some measure of the pulse length because no second
harmonic intensity will result if the pulses do not overlap in
time; thus, a relative delay of one pulse length will typically
reduce the SHG intensity by about a factor of 2.

Specifically, an autocorrelator yields

A~t!5E
2`

`

I ~ t !I ~ t2t!dt, ~5!

where t is the relative delay between the pulses. Unfortu-
nately, this measurement yields a smeared out version of
I (t), and it often hides structure. For example, satellite
pulses must be indirectly inferred from enlarged wings in
A(t). In addition, in order to obtain as little information as
the pulse length, a guess must be made as to the pulse shape,
yielding a multiplicative factor that relates the autocorrela-
tion full width at half-maximum to that of the pulseI (t).
Unfortunately, this factor varies significantly for different
common pulse shapes. This has resulted in an unfortunate
temptation to choose an ‘‘optimistic’’ pulse shape, such a
sech2(t), which yields a large multiplicative factor and hence
a shorter pulse length for a given measured autocorrelation
width. Also, even when the spectrum or another quantity,
such as the interferometric autocorrelation,39–41 is also mea-
sured, there is not sufficient information to determine the
pulse. Finally, systematic error can be present in the mea-
sured autocorrelation—misalignment effects that can intro-
duce distortions—and it is difficult to know when the mea-
sured autocorrelation is free of such effects. Despite these
serious drawbacks, the autocorrelation and spectrum have
remained the standard measures of ultrashort pulses for over
25 years, largely for lack of better methods.

II. THE TIME-FREQUENCY DOMAIN

A large number of clever schemes have been developed
over the past 25 years to better measure ultrashort laser
pulses.42–47Most have been novel experimental implementa-
tions and variations of autocorrelators, but many have also
offered additional information about the pulse, although
never full characterization. Recently, however, there has
been a renaissance in this field,48 and several new techniques
have emerged that do achieve full characterization. They op-
erate, not in the time or frequency domains, but in the ‘‘time-
frequency domain.’’30,49,50 This somewhat unintuitive do-
main has received much attention in acoustics research, but it
has received only scant use in optics problems. Measure-
ments in the time-frequency domain involve both temporal
resolution and frequency resolution simultaneously. A well-
known example of such a measurement is the musical score,
which is a plot of a sound wave’s short-time spectrum versus
time, with additional information on the top indicating inten-
sity ~e.g.,fortissimoor pianissimo!. A mathematically rigor-
ous version of the musical score is the spectrogram:49

S~v,t!5U E
2`

`

E~ t !g~ t2t!exp~2 ivt !dtU2

, ~6!

whereg(t2t) is a variable-delay gate function. The spec-
trogram is the set of spectra of all gated chunks ofE(t) as
the delay,t, is varied.
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Knowledge of the spectrogram ofE(t) is sufficient to
essentially completely determineE(t)49,51 ~except for an ab-
solute phase factor, which is of no interest in optics prob-
lems!. The FROG technique involves measuring the spectro-
gram of the pulse.

The question that immediately arises, however, is: what
gate function is available in the laboratory? It is best to use a
gate that is shorter than the pulse, although not too short, or
spectral information—and hence phase information—will be
lost. Of course, no event shorter than the pulse is available to
be used as a gate; as in an autocorrelator, it is necessary to
use the pulse to gate itself. As a result, a nonlinear-optical
interaction must be used to perform the gating. In fact, what
is required is a spectrally resolved autocorrelator.17,22,52If the
signal pulse in a SHG-based autocorrelator is spectrally re-
solved, the result is a spectrogram:

I FROG
SHG ~v,t!5U E

2`

`

E~ t !E~ t2t!exp~2 ivt !dtU2

. ~7!

The above measurement is precisely the FROG technique
using the SHG process,16,17,22so we have labeled the above
expressionI FROG

SHG (v,t), that is, the ‘‘SHG FROG trace.’’
Other autocorrelation beam geometries are also commonly
used for FROG measurements, yielding alternative types of
spectrograms, and they will be discussed and compared later.
In addition, we will briefly discuss the ‘‘sonogram,’’ a rela-
tive of the spectrogram, which involves gating in the fre-
quency domain with a narrowband gate and then time resolv-
ing the gated piece of the waveform. The sonogram has also
been used for ultrashort-pulse measurement.15,19,46,53–57

III. PHASE RETRIEVAL

The use of the pulse to gate itself in a spectrogram com-
plicates the problem somewhat. Spectrogram inversion algo-
rithms require knowledge of the gate function51 and hence
cannot be used. The problem must then be recast into another
form. The solution is to rewrite the above expression as the
‘‘two-dimensional phase-retrieval problem.’’17,21,22,52

We begin by referring to the autocorrelator signal field,
E(t) E(t2t) for an SHG autocorrelator, asEsig(t,t). Now,
considerEsig(t,t) to be the Fourier transform with respect to
t ~not t! of a new quantity that we will callÊsig(t,V). It is
important to note that, once found,Êsig(t,V) easily yields
the pulse field,E(t). Specifically, E(t)5Êsig(t,V50) ~a
complex multiplicative constant remains unknown, but is of
little interest!. Thus, to measureE(t), it is sufficient to find
Êsig(t,V).

We now rewrite the expression for the FROG trace in
terms ofÊsig(t,V):

I FROG
SHG ~v,t!5U E

2`

`

Êsig~ t,V!exp~2 ivt2 iVt!dtdVU2

.

~8!

This expression can be verified by simply doing theV inte-
gration, which then yields Eq.~7!. Here, we see that the
measured quantity,I FROG

SHG (v,t), is the squared magnitude of
the 2D Fourier transform ofÊsig(t,V). The spectrogram
measurement thus yields the magnitude, but not the phase, of

the two-dimensional Fourier transform of the desired quan-
tity Êsig(t,V). The problem is then to find the phase of the
Fourier transform ofÊsig(t,V). This is the 2D phase-
retrieval problem.58

Quite unintuitively, this is a solved problem when cer-
tain additional information regardingÊsig(t,V) is available,
such as that it has finite support~that is, is zero outside a
finite range of values oft andV!.58–61 This is in contrast to
the 1D problem, in which it is impossible to find a function
of one variable whose Fourier-transform magnitude is
known, despite additional information, such as finite support.
Indeed, in the 1D case, infinitely many additional solutions
exist.58,62,63 The two-dimensional phase-retrieval problem
occurs frequently in imaging problems,61,64where finite sup-
port is common. In ultrashort-pulse measurement, the re-
quired additional information consists, not of finite support,
but of the knowledge of the mathematical form ofÊsig(t,V).
For example, in SHG FROG,16 we know that Esig(t,t)
5E(t)E(t2t). In another version of FROG, called
polarization-gate~PG! FROG,17 Esig(t,t)5E(t)uE(t2t)u2.
This additional information turns out to be sufficient, and
thus, the problem is solved.17 Indeed, it is solved in a par-
ticularly robust manner, with many other advantageous fea-
tures, such as feedback regarding the validity of the
data.23,32,34 In Sec. VII, we will discuss the algorithm that
finds the solution to the two-dimensional phase-retrieval
problem for ultrashort-laser-pulse measurement in detail.

IV. A BRIEF HISTORY OF
ULTRASHORT-LASER-PULSE MEASUREMENT

The first use of time-frequency methods for ultrashort-
laser-pulse characterization was by Treacy in 1971,65 who
made sonograms of ultrashort pulses but did not retrieve the
intensity and phase from them. Unfortunately, this work does
not appear to have been appreciated at this time, and the final
step of pulse retrieval from these sonograms was not taken.
These ideas were rediscovered only recently.46,53,54 Chilla
and Martinez were the first to retrieve~approximately! the
full intensity and phase of an ultrashort pulse from a
sonogram.15,55,56Others have since developed variations on
their method.19,57 Ishida and co-workers were, to our knowl-
edge, the first to make spectrograms of ultrashort laser
pulses, but they did not retrieve pulses from them.66–68 Tre-
bino and Kane17,21,22,52introduced phase-retrieval techniques
and were the first to develop a rigorous method~FROG! for
pulse characterization. In this work, we will concentrate on
FROG. FROG is the most studied and established ultrashort-
pulse measurement technique, and it has all of the advan-
tages mentioned in Sec. I, while other techniques do not. It
also makes explicit use of phase retrieval, which is respon-
sible for its accuracy and versatility, while other methods do
not and, as a result, achieve at best approximate results for
simple pulses only.

V. FROG: GENERAL FEATURES

FROG is any autocorrelation-type measurement in
which the autocorrelator signal beam is spectrally resolved
~see Figs. 1 and 2!.17,21,22,52Because several different beam

3279Rev. Sci. Instrum., Vol. 68, No. 9, September 1997 Ultrashort laser pulses



FIG. 2. FROG traces for the various FROG geometries for typical ultrashort light pulses. The top row shows the intensity vs time,I (t) ~solid line!, and phase vs time,w(t) ~dashed line!, for

various pulses. The next row shows the spectrum,Ĩ (v2v0) ~solid line!, and the spectral phase,w̃(v2v0) ~dashed line!, for each pulse. In the first two rows of plots in this figure, the ticks on

the phase axis correspond to increments ofp radians. The third row shows the instantaneous frequency vs time,v(t) ~in blue!. Also shown in the third row is the group delay vs frequency,t̃(v)

~in green!. Note that thet̃(v) plots must be turned sideways because the horizontal axis in this row of figures is time, and the vertical axis is frequency. Arrows in this figure indicate infinities.

The remaining four rows show false-color~purple means high intensity and red means low intensity! FROG traces for the various pulses for the different FROG beam geometries: polarization

gate~PG!, self-diffraction~SD!, second-harmonic generation~SHG!, and third-harmonic generation~THG!. Note that no row exists for transient grating~TG! FROG because it yields traces that

are identical to PG FROG or SD FROG, depending on which pulse is delayed. Note that the PG and SD FROG traces mirror the instantaneous frequency vs time or the group delay vs frequency,

whichever is more intuitive. The THG FROG traces are more symmetrical, and hence less intuitive, and the SHG FROG traces are perfectly symmetrical and hence have an ambiguity in the

direction of time.
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FIG. 2 ~Continued.!

3281Rev. Sci. Instrum., Vol. 68, No. 9, September 1997 Ultrashort laser pulses



geometries can be used for performing autocorrelation mea-
surements, there are also several beam geometries for per-
forming FROG measurements, and they are illustrated in
Fig. 1, and some of their properties are summarized in Table
I. Each yields its own traces, although some geometries yield
similar traces, and learning to read them is easy if one re-
members that they are essentially musical scores of the pulse.
Measured traces for various pulses are shown in Fig. 2. The
pulse intensity and phase may be estimated simply by look-
ing at the experimental trace, or the iterative algorithm may
be used to retrieve the precise intensity and phase versus
time or frequency~usually in a few seconds to a minute!.
Before we discuss these geometries in detail, however, we
describe several general features of FROG.

Unlike other ultrashort-pulse-measurement methods,
FROG is very accurate. No approximations are made. All
that must be assumed in FROG is a nearly instantaneously
responding medium, and even that assumption has been
shown to be unnecessary, as the medium response can be
included in the algorithm.69 Similarly, any known systematic
error in the measurement may also be modeled in the
algorithm,32,34 although this is not generally necessary, ex-
cept for extremely short pulses (,10 fs).

Also, unlike other ultrashort pulse measurement meth-
ods, FROG completely determines the pulse with essentially
infinite temporal resolution.21,32It does this by using the time
domain to obtain long-time resolution and the frequency do-
main for short-time resolution. As a result, if the full pulse
spectrogram is entirely contained within the measured trace,
then there can be no additional long-time pulse structure

FIG. 1. Schematics of five different beam geometries for performing FROG
measurements of ultrashort laser pulses: polarization gate~PG!, self-
diffraction ~SD!, second-harmonic generation~SHG!, and third-harmonic
generation~THG!, and transient grating~TG! FROG. Solid lines indicate
input pulses, and dashed lines indicate signal pulses. The nonlinearity of the
nonlinear medium is shown; Pol5polarizer; WP5wave plate; Pr5prism;
L5lens; and Cam5Camera. The prism-lens combination in each arrange-
ment is meant to represent a generic spectrometer, which could involve a
grating or other dispersive element instead of the prism. Not shown are
delay lines and various additional lenses, also common to all arrangements.
The frequencies shown~v, 2v, 3v! are the carrier frequencies of the pulses
involved and indicate whether the signal pulse has the same carrier fre-
quency as the input pulse or is shifted, as in SHG and THG.

TABLE I. Brief summary of the characteristics of the various FROG beam geometries. Single-shot and mul-
tishot sensitivity values are very rough and assume 800 nm, 100 fs pulses from a regeneratively amplified or
unamplified Ti:sapphire oscillator, respectively, using a weak focus to about 100mm in the nonlinear medium.
Tighter focus (;10mm) is assumed in THG FROG because the nonlinearity assumed for this table is a surface
effect, and the resulting decrease in Rayleigh range results in no loss of signal.

Geometry PG SD TG THG SHG

Nonlinearity x (3) x (3) x (3) x (3) x (2)

Sensitivity
~single shot!

;1 mJ ;10mJ ;0.1mJ ;0.03mJ ;0.01mJ

Sensitivity
~multishot!

;100 nJ ;1000 nJ ;10 nJ ;3 nJ ;0.001 nJ

Advantages Intuitive
traces;

Automatic
phase

matching

Intuitive
traces

Bkgrnd-free;
Sensitive;
Intuitive
traces

Sensitive;
Very large
bandwidth

Very
sensitive

Disadvantages Requires
polarizers

Requires
thin medium;

not phase
matched

Three beams Unintuitive
traces;

Very short-l
signal

Unintuitive
traces;
Short-l
signal

Ambiguities None known None
known

None
known

Relative
phase of
multiple
pulses:

w, w62p/3

Direction of
time;

Rel. phase
of multiple

pulses:
w, w1p
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~since the spectrogram is essentially zero for off-scale de-
lays!, and there can be no additional short-time pulse struc-
ture ~since the spectrogram is essentially zero for off-scale
frequency offsets!. Interestingly, this extremely high tempo-
ral resolution can be obtained by using delay increments that
are as large as the time scale of the structure. Again, this is
because the short-time information is obtained from large
frequency-offset measurements. Thus, as long as the mea-
sured FROG trace contains all of the nonzero values of the
pulse FROG trace, the result is rigorous.~Of course, the trace
typically only falls asymptotically to zero as it extends to
delays and frequency offsets of6` in all directions, but
these low values outside the measured trace do not signifi-
cantly affect the retrieved pulse.!

Another useful and important feature that is unique to
FROG is the presence of feedback regarding the validity of
the measurement data. FROG actually contains two different
types of feedback. The first is probabilistic, rather than de-
terministic, but it is still helpful. It results from the fact that
the FROG trace is a time-frequency plot, that is, anN3N
array of points, which are then used to determineN intensity
points andN phase points, that is, 2N points. There is thus
significant overdetermination of the pulse intensity and
phase—there are many more degrees of freedom in the trace
than in the pulse. As a result, the likelihood of a trace com-
posed of randomly generated points corresponding to an ac-
tual pulse is very small. Similarly, a measured trace that has
been contaminated by systematic error is unlikely to corre-
spond to an actual pulse. Thus, convergence of the FROG
algorithm to a pulse whose trace agrees well with the mea-
sured trace virtually assures that the measured trace is free of
systematic error. Conversely, nonconvergence of the FROG
algorithm~which rarely occurs for valid traces! indicates the
presence of systematic error. To appreciate the utility of this
feature, recall that intensity autocorrelations have only three
constraints: a maximum at zero delay, zero for large delays,
and even symmetry with respect to delay. These constraints
do not limit the autocorrelation trace significantly, and one
commonly finds that the autocorrelation trace can vary quite
a bit in width during alignment while still satisfying these
constraints. Other intensity-and-phase methods measure a
time-frequency-domain plot, but they use only the mean de-
lay versus frequency or similar quantity and, as a result, also
lack this feedback. It should be emphasized that this argu-
ment is merely probabilistic, and that, on one occasion, we
encountered a systematic-error-contaminated SHG FROG
trace that yielded convergence. However, the SHG FROG
trace has additional symmetry that is lacking in other FROG
methods, so such an occurrence is more likely there. The
other FROG methods have so far reliably revealed system-
atic error in this manner.

Another feedback mechanism in FROG is deterministic
and has proven extremely effective in revealing systematic
error in SHG FROG measurements of;10 fs pulses, where
crystal phase-matching bandwidths are insufficient for the
massive bandwidths of the pulses to be measured. It involves
computing the ‘‘marginals’’ of the FROG trace, that is, inte-
grals of the trace with respect to delay or frequency. The
marginals can be compared to the independently measured

spectrum or autocorrelation, and expressions have been de-
rived relating these quantities. Comparison with the spec-
trum is especially useful. The marginals can even be used to
correct an erroneous trace. The interested reader is referred
to the relevant references for more detail on this
subject.23,32,34

VI. THE FROG APPARATUS: BEAM GEOMETRIES

In this section, we describe and compare several FROG
beam geometries and their traces, so that the choice of which
geometry to use may be more easily made. We also give
sufficient detail to set up several of them.

A. Polarization-gate FROG

Polarization-gate ~PG! FROG17,21,23,24,35,70 uses the
polarization-gate beam geometry, popular for optical gating
and shown in Fig. 1 and in greater detail in Fig. 3. In this
geometry, the pulse is split into two, with one pulse~the
‘‘probe’’ ! then sent through crossed polarizers and the other
~the ‘‘gate’’! through a half-wave plate or other device in
order to achieve a645 deg linear polarization with respect
to that of the probe pulse. The two pulses are then spatially
overlapped in a piece of fused silica~or other medium with a
very fast third-order susceptibility!. In the fused silica, the
gate pulse induces a birefringence through the electronic
Kerr effect, a third-order optical nonlinearity, also known as
the nonlinear refractive index. As a result, the fused silica
acts as a wave plate while the gate pulse is present, rotating
the probe pulse’s polarization slightly, which allows some
light to be transmitted through the analyzer. Because bire-
fringence occurs only when the gate pulse is present, this
geometry yields an autocorrelation measurement of the pulse
if one simply measures the energy of the light transmitted
through the analyzer versus the relative delay between the
two pulses. And by spectrally resolving the light transmitted
by the analyzer versus delay, a PG FROG trace is measured.

The PG FROG trace is given by

I FROG
PG ~v,t!5U E

2`

`

E~ t !uE~ t2t!u2 exp~2 ivt !dtU2

. ~9!

Note that the gate function in PG FROG isuE(t2t)u2,
which is a real quantity and so adds no phase information to
the gated slice ofE(t) whose spectrum is measured. As a
result, PG FROG traces are quite intuitive, accurately reflect-
ing the pulse frequency versus time. Sample PG FROG
traces are shown in Fig. 2.

FIG. 3. Experimental apparatus for multishot PG FROG measurements.
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PG FROG is the most intuitive FROG variation, and it
has many other desirable qualities. First, and most impor-
tantly, there are no known ambiguities in PG FROG. Thus,
PG FROG yields complete and unambiguous pulse charac-
terization in all known cases.

This lack of ambiguities is quite useful, but it is also
interesting because it is well known that the spectrogram—
which is different from FROG in that it uses an independent
gate function~i.e., not a gate consisting of the pulse itself, as
in FROG!—has an ambiguity in the relative phase of well
separated pulses. For such an independent-gate spectrogram,
the relative phase of well separated pulses is completely un-
determined. This is because, when the two pulses are sepa-
rated by more than the gate width, the spectrogram splits into
the sum of the two individual-pulse spectrograms, and the
squared magnitude prevents the determination of the relative
phase. There are thus infinitely many different relative-phase
values possible in the independent-gate spectrogram of well-
separated pulses. This ambiguity does not occur in PG
FROG @or any other FROG variation, although SHG FROG
has a single ambiguity,w and w1p, and third harmonic
generation~SHG! FROG has a double ambiguity,w and w
62p/3, in the relative phase of such pulses for other rea-
sons# because, in FROG, the gate is the pulse itself, so the
pulses cannot be separated by more than the gate width.

Another advantage of PG FROG is that the nonlinear-
optical process is automatically phase matched, so alignment
is easy.

Disadvantages of PG FROG are that it requires high-
quality polarizers~an extinction coefficient of better than
1025 is recommended!, which can be expensive. In addition,
high-quality polarizers tend to be fairly thick, so pulses can
change due to material dispersion while propagating through
them. This is not as problematic as it first appears because
the full pulse intensity and phase are measured at the fused
silica, so it is possible to theoretically propagate the pulse to
any point before or after the point where it was measured.
Nevertheless, this is somewhat undesirable. A further disad-
vantage of the requirement of high-quality polarizers is that
they are unavailable in spectral regions such as the deep UV
(,;250 nm). They also limit sensitivity because there is
always some leakage.

These disadvantages are not severe, however, especially
for amplified ultrashort pulses in the visible and the near-IR.
And to date, the PG FROG technique has been used by many
groups to perform multishot and single-shot measurements
of ultrashort pulses, and a commercial PG FROG product is
currently available.

Typical values of the various optical elements in a mul-
tishot PG FROG device for measuring amplified 100 fs, 800
nm, .100 nJ pulses from a regeneratively amplified Ti:sap-
phire laser are as follows.70 A 50% beam splitter splits the
pulse to be measured into two, one of which passes through
crossed calcite polarizers~extinction coefficient,1025!, the
other of which is polarization rotated by a wave plate~or
out-of-plane propagation! to a 645-degree~or circular! po-
larization. The pulses, lightly focused using a;50 cm lens,
overlap in an approximately 1-mm-thick piece of fused
silica. The light passing through the second polarizer is the

signal pulse, and it is sent into a 1/4 m spectrometer incor-
porating a;1200 line per mm diffraction grating. A home-
made spectrometer, using a grating and a pair of lenses also
works well ~the focus in the fused silica can function as the
entrance slit!. A video or CCD camera at the output plane of
the spectrometer then measures the spectrum averaged over
as many as 1000 pulses. The delay of one of the two pulses
is then varied using a delay line, and the spectrum is mea-
sured for about 100 different delays, a few femtoseconds
apart. The above spectrometer yields more than sufficient
spectral resolution for measurements of;100 fs pulses, and
it may be necessary to combine adjacent spectral values to

FIG. 4. ~a! Experimental multishot FROG trace for an ultrashort laser pulse
with positive linear chirp.~b! FROG trace for the pulse retrieved by the
algorithm.~c! Retrieved intensity and phase. Note the similar pulse intensity
and phase to that shown in Fig. 2 for a linearly chirped pulse. In Figs. 4 and
5, contour lines represent the values: 2%, 5%, 10%, 20%, 40%, 60%, and
80%.
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reduce the number of points per spectrum. Indeed, for the
measurement of significantly shorter pulses, a prism spec-
trometer may be used.29,34 Figures 4 and 5 show typical ex-
perimental PG FROG traces and the retrieved pulse intensi-
ties and phases for two different ultrashort pulses. These
measurements were made by Kohler, Wilson, and
co-workers,70 who routinely make complex shaped pulses for
the control of chemical reactions.

PG FROG is easily implemented in a single-shot beam
geometry, which can yield measurement of a single ul-
trashort laser pulse. This is achieved by focusing the two
beams with a cylindrical lens and crossing them at a fairly

large angle, say, about 10 deg. In this manner, the relative
delay between the pulses varies with position at the fused
silica nonlinear medium. A spherical lens then images the
line-shaped beam-overlap region at the fused silica onto the
entrance slit of the spectrometer, so that delay is then
mapped onto position along this slit. The optics of the spec-
trometer then image this delay variation onto the exit plane
of the spectrometer. As a result, at the exit plane of the
spectrometer~shown on its side in Fig. 6!, delay proceeds
horizontally and frequency proceeds vertically, and the entire
trace is obtained on each laser shot.

In such a single-shot geometry, any focusing of the
beams into the fused silica nonlinear medium should be per-
formed with a cylindrical lens because the range of delays
achievable in this manner is proportional to the spot size in
the plane of the beams, and several mm spot sizes are typi-
cally required to achieve a few hundred fs of delay. It is
essential, in using this type of beam geometry, to maintain
excellent spatial beam quality, and spatial filtering of the
beams before the FROG device is recommended. Single-shot
operation is easily achieved with all FROG beam geometries
in a similar manner. It should be mentioned that such mea-
surements require the use of an imaging spectrometer, that is,
a spectrometer that images the entrance slit onto a focused
and untilted slit at the exit plane. Because off-axis reflections
are usually used in commercial spectrometers, they typically
are not of this type, unless specifically designed, usually with
aspherics, to be so. Interestingly, the typical ‘‘home-brew’’
spectrometer, constructed using a pair of lenses and a grating
or prism ~see Fig. 1!, is, in fact, an imaging spectrometer,
provided that on-axis propagation occurs at both lenses.
Single-shot PG FROG experiments have been performed on
visible and 308 nm UV pulses by Kane and Trebino.21,24

In all versions of FROG, beam angles should be as small
as is acceptable in view of scattered light and, if single shot,

FIG. 5. ~a! Experimental multishot FROG trace for a shaped~multiple
pulse! ultrashort laser pulse.~b! FROG trace for the pulse retrieved by the
algorithm. ~c! Retrieved intensity and phase. Note that FROG is able to
retrieve a pulse that is quite complex.~Discrepancies between the measured
and retrieved traces are probably due to spatial inhomogeneities in the
beam.!

FIG. 6. Experimental apparatus for single-shot PG FROG@from Kane and
Trebino ~Ref. 21!#. In order to perform a single-shot measurement, the
beams are crossed at a large angle~10–20 deg! and focused with a cylin-
drical lens, yielding a line focus in the nonlinear medium, where the relative
delay between the two pulses varies with spatial coordinate along the line
focus. This focus is then imaged onto the entrance slit of the spectrometer,
whose output yields the entire FROG trace on a single shot. In this appara-
tus, the out-of-plane propagation of one of the beams is to rotate the polar-
ization of the beam by about 45 deg.
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the required range of delays. Otherwise, a geometrical
smearing effect can artificially broaden the pulse in time.
This effect was described for single-shot PG FROG by Tien
et al.71 and DeLonget al.,32 and for multishot PG FROG by
Taft et al.34 but also can occur in all versions of FROG as
well as in other pulse-measurement techniques.

Finally, recall that PG FROG utilizes a third-order non-
linearity, so the signal intensity scales as the third power of
the input intensity. Consequently, pulses that are longer or
weaker by a factor of 2 yield one eighth the output power.
And an increase in the spot size by a factor of 2 yields one
sixty-fourth the signal intensity. The same is, of course, true
for other third-order FROG and autocorrelation methods.

B. Self-diffraction FROG

Self-diffraction ~SD!22,31 is another beam geometry that
uses the electronic Kerr effect as the nonlinear-optical pro-
cess for making optical gating in FROG measurements~see
Fig. 1!. SD FROG also involves crossing two beams in a
piece of fused silica~or other third-order nonlinear medium!,
but in SD FROG, the beams can have the same polarizations.
The beams generate a sinusoidal intensity pattern and hence
induce a material grating, which diffracts each beam into the
directions shown in Fig. 1. Spectrally resolving one of these
beams as a function of delay yields an SD FROG trace,
examples of which are shown in Fig. 2. The expression for
the SD FROG trace is

I FROG
SD ~v,t!5U E

2`

`

E~ t !2E~ t2t!* exp~2 ivt !dtU2

. ~10!

SD FROG traces differ slightly from PG FROG traces.23 For
a linearly chirped pulse, the slope of the SD FROG trace is
twice that of the PG FROG trace.23 As a result, SD FROG is
more sensitive to this and other even-order temporal-phase
distortions. It is, however, less sensitive to odd-order
temporal-phase distortions. SD FROG also uniquely deter-
mines the pulse intensity and phase.

An advantage of SD FROG over PG FROG is that it
does not require polarizers, so it can be used for deep UV
pulses or pulses that are extremely short, for which high-
quality polarizers are unavailable or undesirable. On the
other hand, SD is not a phase-matched process. As a result,
the nonlinear medium must be kept thin (,;200mm) and
the angle between the beams small (,;2 deg) in order to
minimize the phase mismatch. In addition, the phase mis-
match is wavelength dependent. Consequently, if the pulse
bandwidth is large, the SD process can introduce
wavelength-dependent inefficiencies into the trace, resulting
in distortions. These pitfalls are easily avoided for>100 fs
pulses, and Clement and co-workers have shown that SD
FROG is a good method for measuring amplified ultrashort
pulses in the violet on a single shot.31

C. Transient-grating FROG

Ideally, one would like a beam geometry that is both
phase matched and free of polarizers. The transient-grating
~TG! beam geometry~see Figs. 1 and 7! is such a geometry,
and we consider it to be the best all-round beam geometry

for FROG measurements of amplified ultrashort pulses.72 In-
deed, the TG geometry is very popular in nonlinear-
spectroscopy measurements,73–75also, and its advantages for
such measurements are also advantages for FROG measure-
ments.

TG FROG is a three-beam geometry, requiring that the
input pulse be split into three pulses. Two of the pulses are
overlapped in time and space at the optical-Kerr medium,
producing a refractive-index grating, just as in SD FROG. In
TG, however, the third pulse is variably delayed and over-
lapped in the fused silica and is diffracted by the induced
grating to produce the signal pulse. The four beam angles
~three input and one output! in TG geometries usually take
the form of what is known as the BOXCARS arrangement,76

in which all input pulses and the signal pulse are nearly
collinear, but appear as spots in the corners of a rectangle on
a card placed in the beams. While nonlinear spectroscopists
often use an arrangement in which two beams nearly coun-
terpropagate with the other two,77,78 all four beams should
nearly copropagate in FROG measurements in order to avoid
temporal smearing effects due to large beam angles.

Depending on which pulse is variably delayed~with the
other two coincident in time!, the TG FROG trace is math-
ematically equivalent to PG FROG or SD FROG. To see
this, note that if pulse No. 2 in Fig. 7 is variably delayed, the
signal pulse is given by

Esig
TG1~ t,t!5E1~ t !E2* ~ t2t!E3~ t !. ~11!

Since all pulses are identical, this becomes

Esig
TG1~ t,t!5E~ t !2E* ~ t2t!, ~12!

which is just the expression for the SD FROG signal field.
An analogous argument shows that if either of the other two
pulses is variably delayed, the signal field is identical to the
PG FROG signal field~with a reversed sign of the delay!.
Thus, TG FROG yields familiar traces.

TG FROG has several advantages over its two-beam
cousins. Unlike PG FROG, it avoids polarizers, so it does not
distort extremely short pulses, and hence can be used in the
deep UV. More importantly, it is background-free. It can use
all parallel polarizations, which yields greater signal strength
because thex1111

(3) element of the susceptibility tensor is a
factor of three larger than the off-diagonal elements used in
PG FROG. This fact, coupled with the lack of polarizer-
leakage background, makes TG FROG significantly more
sensitive than PG FROG. Unlike SD FROG, TG FROG is
phase matched, so long interaction lengths in the nonlinear
medium may be used, enhancing signal strength due to the
length-squared dependence of the signal. In addition, larger
beam angles may be used than in SD FROG, reducing any
scattered-light background. As a result, TG FROG is also
significantly more sensitive than SD FROG. At the same
time, TG FROG retains the intuitive traces and ambiguity-
free operation common to these two-beam FROG methods.
The only disadvantage of TG FROG is the need for three
beams and to maintain good temporal overlap of the two
constant-delay beams. But we have found these requirements
not to be particularly inconvenient, and the advantages of
this geometry far outweigh the disadvantages. For example,
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the large bandwidth of this entirely phase-matched geometry
and the avoidance of potentially pulse-distorting polarizers
make TG FROG ideal for measuring extremely short pulses
(;20 fs) of a few tens of nJ or more. Indeed, Rundquist and
co-workers have made such measurements with excellent re-
sults.

D. Second-harmonic-generation FROG

We have already mentioned the SHG FROG method.
Figures 1 and 8 show schematics of this method. The main
advantage of SHG FROG is sensitivity: it involves only a
second-order nonlinearity, while the previously mentioned
FROG variations use third-order optical nonlinearities,
which are much weaker. As a result, for a given amount of
input pulse energy, SHG FROG will yield more signal pulse
energy. SHG FROG is commonly used to measure unampli-
fied pulses directly from a Ti:sapphire oscillator, and it can
measure pulses as weak as about 1 pJ; it is only slightly less
sensitive than an autocorrelator.

The main disadvantages of SHG FROG are that, unlike
the previously mentioned third-order versions of FROG, it
has an unintuitive trace that is symmetrical with respect to
delay, and, as a result, it has an ambiguity in the direction of

time. The pulse, E(t), and its time-reversed replica,
E(2t), both yield the same SHG FROG trace. Thus, when
an SHG FROG trace is measured and the phase-retrieval
algorithm run on it, it is possible that the actual pulse is the
time-reversed version of the retrieved pulse. This ambiguity
can easily be removed in one of several ways. One is to
make a second SHG FROG measurement of the pulse after
distorting it in some known manner. The most common
method is to place a piece of glass in the beam~before the
beam splitter!, introducing some positive dispersion and
hence chirp into the pulse. Only one of the two possible
pulses is consistent with both measurements.~Placing a piece
of glass after the beam splitter—in only one beam—and
measuring only a single SHG FROG trace is not sufficient to
remove this ambiguity, unless traces using two different el-
ements are made.! Another is to know in advance something
about the pulse, such as that it is positively chirped. And
finally, Taft34 has found that placing a thin piece of glass in
the pulse before the beam splitter so that surface reflections
introduce a small trailing satellite pulse also removes the
ambiguity. This method has the advantage of requiring only
one SHG FROG trace measurement to determine the pulse
~the time-reversed pulse in this case has a leading satellite
pulse!.

Despite the existence of a ‘‘proof’’79 that the only am-
biguity in SHG FROG is the direction of time, we have also
recently discovered another class of ambiguities in SHG
FROG. These ambiguities rarely appear in practical measure-
ments but are worth mentioning. If the pulse consists of two
~or more! well separated pulses, then the relative phase of the
pulses has an ambiguity. Specifically, the relative phases,w
andw1p, yield the same SHG FROG trace and hence can-
not be distinguished. Note that this ambiguity also occurs
when one measures the simple spectrum of the pulse pair, so
adding the spectrum to the SHG FROG trace does not re-
move it ~the information contained in the spectrum is con-

FIG. 7. Experimental apparatus for TG FROG~from Sweetseret al. Ref. 72!. The input pulses are numbered 1, 2, and 3, and ‘‘s’’ indicates the signal pulse.
A ‘‘BOXCARS’’ beam geometry is best, in which each pulse propagates at the corner of a rectangle. All pulses should propagate in nearly the same direction
to avoid temporal smearing. Two pulses should be coincident in time, while the other has variable delay. The inset shows the phase-matching condition.

FIG. 8. Experimental apparatus for multishot SHG FROG.
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tained in the SHG FROG trace anyway!. This ambiguity is
less severe than and should be distinguished from the ambi-
guity mentioned earlier in spectrograms using an indepen-
dent gate~i.e., not FROG!, which is a complete indetermi-
nacy of the relative phase between well separated pulses.

The most important experimental consideration in SHG
FROG is that the SHG crystal have sufficient bandwidth
~i.e., be thin enough, since the bandwidth is inversely pro-
portional to the crystal thickness! to frequency double the
entire bandwidth of the pulse to be measured. If the crystal is
too thick, then the SHG FROG trace will be too narrow
along the spectral axis, leading to nonconvergence of the
algorithm. It is important to realize that autocorrelators carry
the same crystal-bandwidth requirement, but this require-
ment is often violated in practice because, unlike FROG, no
independent check of the autocorrelation trace exists. Also, a
very convenient feature of FROG is that it is possible to
correct for this effect.34 SHG FROG has been discussed in
detail in other work.16,17,21,23,29,34,79

Figure 9 shows a typical SHG FROG apparatus, consist-
ing of a 50% beam splitter, a delay line using two mirror
pairs ~or corner cubes! on translation stages to give variable
delays, a 10- to 50-cm-focal-length lens or mirror to focus
the pulses into the SHG crystal@usually potassium dihydro-
gen phosphate~KDP! or ~BBO!#, and a 1/8 to 1/4 m
spectrometer/camera. A filter blocks the fundamental-
frequency light, although this is also done by the spectrom-
eter. As in autocorrelation and other pulse-measurement
methods, the crystal thickness for measuring 100 fs, 800 nm
pulses should be no more than;300mm for KDP and
;100mm for BBO. Figure 9 shows an experimental SHG
FROG trace for a pulse with very small satellite pulses, the
retrieved FROG trace, and the retrieved intensity and phase.
Note the good agreement between experimental and re-
trieved traces, even at the;1024 level. The retrieved pulse
yields a FROG error~the rms error between experimental
and retrieved traces; see Sec. VII for further discussion of the
FROG error! of 0.0016, indicative of a very accurate mea-
surement. We also refer the reader to the excellent recent
work of Dudley and co-workers, who have used SHG FROG
to measure exceedingly complex pulses resulting from
propagation through 700 m of fiber.80

E. Third-harmonic-generation FROG

It is also possible to use third-harmonic generation
~THG! as the nonlinear-optical process in a FROG apparatus.
This has been done by Tsanget al., using surface THG
~STHG!,81 a surprisingly strong effect, which has allowed
the measurement of unamplified pulses from a Ti:sapphire
oscillator. Figures 1 and 10 show the arrangement for THG
FROG.

The expression for the THG FROG trace is

I FROG
THG ~v,t!5U E

2`

`

E~ t !2E~ t2t!exp~2 ivt !dtU2

, ~13!

which is similar to that of SHG FROG, except that one of the
factors is squared. There are two possible signal beams that
can be spectrally resolved in THG FROG measurements, and
the choice of these beams determines which factor of the

field, E(t) or E(t2t), is squared in the above expression.
The choice is irrelevant and only serves to reflect the trace
with respect tot.

The main advantage of THG FROG is that, like the other
third-order FROG methods, it removes the direction-of-time
ambiguity that occurs in SHG FROG. In addition, the STHG
effect is sufficiently strong that STHG FROG can be used to
measure unamplified pulses from a Ti:sapphire oscillator. In-
deed, currently, the only third-order FROG method to
achieve this measurement has been STHG FROG.

FIG. 9. ~a! Experimental multishot SHG FROG trace for a pulse from an
unamplified Ti:sapphire oscillator. In order to illustrate the large dynamic
range of SHG FROG, we have plotted the square root of the FROG inten-
sity, which emphasizes the small details and weak satellite pulses. In addi-
tion, the contour lines indicate the values 2%, 4%, 6%, 12%, 20%, 40%,
60%, and 80%. The 2% contour thus indicates 431024 in the actual trace.
~b! The SHG FROG trace computed for the retrieved intensity and phase.
Note that details at the level of 431024 are reproduced.~c! The retrieved
intensity and phase for this trace. Note the satellite pulses at the;1024

level.
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In terms of its performance, THG FROG is intermediate
between SHG FROG and the other third-order FROG meth-
ods. It is less sensitive than SHG FROG, but more sensitive
than PG and SD FROG. Its traces are similar to SHG FROG
traces—somewhat unintuitive—but they have a slight asym-
metry that distinguishes them from SHG FROG traces and
removes the direction-of-time ambiguity. On the other hand,
THG FROG traces are not as intuitive as the other third-
order FROG traces. And while THG FROG lacks the
direction-of-time ambiguity of SHG FROG, it does have
relative-phase ambiguities with well-separated multiple
pulses, as is the case for SHG FROG, but not for the other
third-order FROG methods. And, for pulses that are perfectly
linearly chirped and perfectly Gaussian in intensity, the sign
of the chirp parameter is indeterminate in THG FROG~al-
though this is extremely unlikely to occur in practice!. Thus,
THG FROG and its special case, STHG FROG, represent a
compromise between other FROG variations and hence may
best be used only in special cases, such as for the measure-
ment of an unamplified oscillator pulse train when only one
trace can be made, no additional information is available,
and direction-of-time ambiguity is unacceptable.

There is a unique advantage to STHG FROG, however,
and that is that the THG interaction is a surface effect, so the
phase-matching bandwidth is extremely large. As a result,
STHG FROG may be ideal for extremely short laser pulses,
which require such a thin SHG crystal that SHG FROG mea-
surements are difficult. For example, 10 fs pulses at 800 nm
require a KDP crystal with a thickness of about 30mm or
less, which is possible to obtain, but not a trivial polishing
task. Thinner crystals represent even greater challenges.
Consequently, Ti:sapphire pulses;5 fs in duration may best
be measured with STHG FROG. Note that STHG would be
preferred for this measurement over surface SHG, because
surface SHG is significantly weaker than surface THG.

F. Additional experimental issues

In all FROG measurements, it is essential to measure the
entire trace: the trace should be an island in a sea of zeros.
That no cropping of the trace should occur may seem an
obvious point, but cropped traces are the most common
cause for poor retrieval for new users of FROG.

It should also be mentioned that fused silica is not the
only material that can be used for third-order FROG mea-
surements of ultrashort laser pulses. Any strongly nonlinear
fast-responding material can be used. Luther–Davieset al.82

have used the thin-film polymer, PPV, which offers excellent
signal strength in very thin~few micron! thickness. Heavy-
metal-doped glasses also appear promising.

Other nonlinear-optical processes can also be used. We
have, for example, recently shown that cascaded second-
order processes can mimic the polarization-gate geometry,
but with a much stronger effective nonlinearity.83 The appli-
cation of this idea to FROG will be published soon. Paramet-
ric up or down conversion may also be used. Any other fast
nonlinear-optical process can produce an autocorrelation
measurement, and hence a FROG measurement, as well. It is
simply necessary to modify the algorithm to account for the
change in the expression for the signal field, as will be dis-
cussed in Sec. VII.

VII. THE FROG PULSE RETRIEVAL ALGORITHM

Several FROG pulse-retrieval algorithms17,21,25,26,79,84

have been published, and the best possible computer pro-
gram for pulse retrieval would incorporate all of them,
switching from one to another as one stagnates. We have
found one exception to this rule, however, and that is that the
use of an independently measured spectrum as an additional
constraint79 tends to cause instabilities due to a required de-
convolution and hence is not recommended.16 In addition,
we have found that one algorithmic technique is so reliable
and so superior to the others that most pulses can be re-
trieved with it alone. That algorithmic method is called gen-
eralized projections,26 and it is frequently used in phase-
retrieval problems unrelated to FROG. It is also commonly
used in many other problems, from x-ray crystallography to
the training of artificial neural networks. Indeed, it is one of
the few algorithmic methods than can be proven to converge
when reasonable conditions are met.

The goal of the pulse-retrieval problem in FROG is to
find E(t), or, equivalently,Esig(t,t). In order to do this, we
observe that there are two equations, or constraints, that
Esig(t,t) must satisfy. One is that the measured FROG trace
is the squared magnitude of the 1D Fourier transform of
Esig(t,t) with respect to time:

I FROG~v,t!5U E
2`

`

Esig~ t,t!exp~2 ivt !dtU2

. ~14!

The other constraint is the mathematical form of the signal
field in terms of the pulse field,E(t), for the particular
nonlinear-optical process used in the measurement. The vari-
ous versions of FROG that we have discussed so far have the
signal-field forms:

Esig~ t,t!}5
E~ t !uE~ t2t!u2 for PG FROG

E~ t !2E* ~ t2t! for SD FROG

E~ t !E~ t2t! for SHG FROG

E~ t !2E~ t2t! for THG FROG

. ~15!

In this list, we have omitted TG FROG because it yields the
same expressions as PG or SD FROG.

FIG. 10. Experimental apparatus for THG FROG~from Tsanget al. Ref.
81!. Note that the two pulses overlap spatially at the exit face of the glass
medium.
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The goal is to find the signal field,Esig(t,t), that satis-
fies both of these constraints, Eqs.~14! and ~15!, for the
particular beam geometry.

The essence of the generalized projections technique is
graphically displayed in Figure 11. Consider Fig. 11 as a
Venn diagram in which the entire figure represents the set of
all complex functions of two variables, i.e., potential signal
fields, Esig(t,t). The signal fields satisfying the data con-
straint, Eq.~14!, are indicated by the upper elliptical region,
while those satisfying the mathematical-form constraint, Eq.
~15!, are indicated by the lower elliptical region. The signal-
pulse field satisfying both constraints, the intersection of the
two elliptical regions, is the solution. And it uniquely yields
the pulse field,E(t).

The solution is found by making ‘‘projections,’’ which
have simple geometrical analogs. We begin with an initial
guess at an arbitrary point in signal-field space~usually a
signal field consisting entirely of random numbers!, which
typically satisfies neither constraint. We then make a projec-
tion onto one of the constraint sets, which consists of moving
to the closest point in that set to the initial guess. Call this
point the first iteration. From this point, we then project onto
the other set, moving to the closest point in that set to the
first iteration. This process is continued until the solution is
reached. When the two constraint sets are convex~all line
segments connecting two points in each constraint set lie
entirely within the set!, then convergence is guaranteed.

Unfortunately, the constraint sets in FROG are not con-
vex. When a set is not convex, the projection is not neces-
sarily unique, and a ‘‘generalized projection’’ must be de-
fined. The technique is then called generalized projections
~GP!, and convergence cannot be guaranteed. On the other
hand, the error between the FROG trace of the current signal
field and the measured FROG trace can be shown to continu-
ally decrease with iteration number, and, although it is con-
ceivable that the algorithm may stagnate at a constant value,
this approach is quite robust in FROG problems. And, when
combined with other algorithmic methods,17,25it is extremely
robust.

GP is implemented in FROG by considering the pulse
field, E(k)(t i), the signal field in thett ~time delay! domain,
Esig

(k)(t i ,t j ), and the signal field’s Fourier transform with re-

spect to time,Ẽsig
(k)(v i ,t j ), where t i , t i , and v i51,...,N.

These quantities are eachN or N2 complex numbers. The
superscript, (k), in all of these definitions indicates that these
quantities arekth iterations of the actual quantities for the
pulse.

In order to perform a GP to the FROG-trace data con-
straint set, it is simply necessary to replace the magnitude of
Ẽsig

(k)(v i ,t j ) with the square root of the measured FROG
trace, I FROG(v i ,t j ). It is easy to show that this simple re-
placement yields the smallest change in the signal field that
is consistent with measured trace. Thus, this simple replace-
ment is a GP for all versions of FROG.

It is, however, more difficult to perform a GP to the
mathematical-form constraint set. The goal here is to find the
closest signal field to the current iteration for the signal field,
Esig

(k)(t i ,t j ), that has the desired mathematical form@Eq.
~15!# for the particular version of FROG. In other words, we
wish to find the new signal field,Esig

(k11)(t i ,t j ), that is, the
k11st iteration, that minimizes the functional distance:

Z5 (
i , j 51

N

uEsig
~k!~ t i ,t j !2Esig

~k11!~ t i ,t j !u2 ~16!

and is of the form of Eq.~15!. We can guarantee that both of
these conditions are met by explicitly substituting Eq.~15!
into the above distance function and solving directly for the
pulse field. In particular, for SHG FROG, our goal is to find
the pulse field,E(k11)(t i), t i51,...,N, that minimizes the
functional distance:

Z5 (
i , j 51

N

uEsig
~k!~ t i ,t j !2E~k11!~ t i !E

~k11!~ t i2t j !u2. ~17!

Z is now a function of theN parameters of the next iteration
of the pulse fieldE(k11)(t i), t i51,...,N. The analogous ex-
pression for PG FROG is

Z5 (
i , j 51

N

uEsig
~k!~ t i ,t j !2E~k11!~ t i !uE~k11!~ t i2t j !u2u2.

~18!

OnceE(k11)(t i) is found, the corresponding signal field
can be computed for this pulse field using Eq.~15! and will
be the next iteration for the signal field,Esig

(k11)(t i ,t j ).
Clearly, Esig

(k11)(t i ,t j ) satisfies the mathematical-form con-
straint exactly. And, because it also minimizesZ, the process
in which Esig

(k)(t i ,t j ) is replaced withEsig
(k11)(t i ,t j ) is a GP.

In order to perform this minimization, we compute the
direction of steepest descent: the negative of the gradient of
Z with respect to the fieldE(k11)(t i) at the current value for
the field,E(k)(t i). In other words, we must compute the de-
rivative of Z with respect to each time-point in the complex
field. This vector consists of theN complex numbers,
2]Z/]E(k11)(t i) evaluated atE(k11)(t i)5E(k)(t i). This
computation is somewhat tedious, so we have compiled the
expressions for gradients for the various forms of FROG in
the Appendix.

In practice, we have found that it is not necessary to find
the field,E(t i), that precisely minimizesZ on each iteration.
In principle, in a typical minimization procedure, one would
find the distance in the direction of the~negative of the!

FIG. 11. Geometrical interpretation of the generalized-projections~GP! it-
erative algorithm, showing that convergence to the correct result~the inter-
section of the two constraint sets! is guaranteed when the constraint sets are
convex. ~Convergence remains highly likely even when the sets are not
convex, as is the case in FROG.! Figure adapted from article by DeLong
et al. Ref. 26.
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gradient that minimizesZ, and then would recompute the
above gradient for this new field, find the distance along this
new gradient that minimizesZ, etc. In fact, it is only neces-
sary to find the above gradient and to perform the one-
dimensional minimization along this direction once. While
this new field will not be the precise projection~the mini-
mum of Z!, it is approximate, and it suffices in FROG pulse
retrieval. Indeed, because it is only one step in a larger pro-
cedure, later steps make up for this inaccuracy, and, as a
result, this approximate procedure results in a significantly
faster pulse-retrieval algorithm overall. And, because the
multidimensional surface represented byZ becomes parabo-
loidal near the global minimum represented by the ultimate
solution for the pulse, the overall algorithm is extremely ac-
curate. This process usually requires a few seconds to a few
minutes on a PC or Macintosh for 64364 traces, sometimes
longer if the pulse is complicated or the computer slower.

The measure of the success of a pulse measurement us-
ing FROG is the ‘‘FROG error.’’ It is the rms difference
between the measured traceI FROG(v i ,t j ) ~normalized to
have unity peak! and the traceI FROG

(k) (v i ,t j ) computed from
the retrieved pulse field,E(k)(t i), wherek indicates the most
recent iteration. It is given by

G5A 1

N2 (
i , j 51

N

uI FROG~v i ,t j !2aI FROG
~k! ~v i ,t j !u2, ~19!

wherea is the real number that minimizesG ~required for
renormalization!. For noise-free data,G should be limited by
machine error~typically, we achieve values of;1027!. The
resulting FROG error for experimental traces should indicate
the experimental error. Typical values for FROG errors
achieved in experiments with 1283128 arrays using PG
FROG are,1% and using SHG FROG are,0.5% ~be-
cause there is less noise background in SHG FROG!. Errors
tend to be lower for larger arrays because, due to the fast
Fourier transform relations between the delay and frequency
axis ranges and increments, the fractional area of the trace
that is nonzero is less in the larger array traces. The general
result isG;(TBP/N)1/2e, where TBP is the time-bandwidth
product of the pulse,e is the error in the trace data points
where the trace is nonzero, andN3N is the array size.25 In
this calculation, we have assumed that the noise is multipli-
cative. For additive noise, the error pervades the entire trace,
so G;e, independent of TBP andN.

There is additional information on the running of this
algorithm in another publication we have written, and the
interested reader is referred to that publication.32 A user-
friendly version of the FROG algorithm can be purchased
from Femtosoft~www.wco.com/;fsoft/!.

VIII. THE MEASUREMENT OF WEAK OR COMPLEX
PULSES: TADPOLE

All techniques for the measurement of ultrashort laser
pulses require the use of a nonlinear-optical medium and
hence have limited sensitivity. The most sensitive intensity
and phase measurement technique known is SHG FROG,
and its sensitivity is on the order of 1 pJ for multishot mea-
surements. Many ultrafast-spectroscopy experiments, how-

ever, produce signal pulses with fJ of energy or less. Of
course, the information available in the spectroscopy mea-
surement would be greatly enhanced if full characterization
of the ultraweak signal pulse were possible.85–87 Thus, it is
desirable to be able to measure weaker pulses.

While such a measurement would seem nearly impos-
sible, it can be achieved in nearly all cases by making the
following observation: ultraweak pulses never occur alone;
they are always created by significantly stronger pulses in-
teracting in some manner with a medium. As a result, the
stronger pulse may be measured using FROG and can be
utilized as a known reference pulse for the purpose of mea-
suring the ultraweak unknown pulse. A variety of techniques
that utilize a reference pulse are available. Probably the sim-
plest and most sensitive is spectral interferometry, which has
been known since 1896.85,86,88–99

Spectral interferometry involves simply measuring the
spectrum of the sum of a reference pulse and the unknown
pulse. This yields sufficient information to fully determine
the unknown pulse, provided the reference pulse is known.
Since spectral interferometry is an entirely linear measure-
ment, it is extremely sensitive. Fittinghoffet al.,18 ~calling
the combination of FROG and spectral interferometry: tem-
poral analysis by dispersing a pair of light E-fields or TAD-
POLE!, have measured a reference pulse using SHG FROG
and have used this known pulse to measure the full intensity
and phase of a train of pulses containing on average 1/5 of a
photon each. The beam geometry for this measurement is
shown in Fig. 12.

We should also mention that complex shaped pulses are
probably best measured with TADPOLE because it requires
only a single spectral measurement. FROG, on the other
hand, requiresN spectral measurements to produce the full
N3N time-frequency-domain trace. Thus, a pulse with sig-
nificant structure can yield a very large FROG trace and
require a long time for algorithm convergence. In addition,
complex shaped pulses are usually created using a pulse-
shaping apparatus that starts with a very simple smooth
pulse. Consequently, the simple pulse could be measured
with FROG and then used as the reference pulse for measur-
ing the shaped pulse using spectral interferometry. Such a
TADPOLE set up would significantly simplify the measure-
ment and the analysis.

In addition, since spectral interferometry requires mea-
suring only a single spectrum, the remaining rows of the
camera array could then be used to obtain intensity and
phase information as a function of a spatial coordinate of the

FIG. 12. TADPOLE~the combination of FROG and spectral interferometry!
beam geometry~from Fittinghoff et al. Ref. 18!. Measurement of the spec-
trum of the sum of two pulses is sufficient to yield the intensity and phase of
one of the pulses if the other pulse intensity and phase is known.
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beam. In such a measurement, it is important that the refer-
ence pulse is spatially filtered to ensure flat-phase wavefronts
~or at least known wavefronts!. This has been done with a
fully characterized reference pulse100 and previously with an
uncharacterized reference pulse.94

In addition, both polarizations may be measured simul-
taneously using TADPOLE, and, as a result, the time-
dependent polarization of a weak ultrashort pulse may be
measured. This has been done, and the method has been
called polarization labeled interference versus wavelength
for only a glint ~POLLIWOG!.101

While detailed discussion of the work mentioned in this
section is beyond the scope of this article, we mention it here
for completeness and refer the interested reader to the origi-
nal articles on this subject.

IX. FUTURE DIRECTIONS

In practice, FROG works well. There are, however,
some improvements that will be welcome. The FROG algo-
rithm requires a minute or so to converge, and it would be
nice to speed up the process. We are currently developing an
artificial neural network for retrieving pulses from FROG
traces. The advantage of the use of a neural net is that, while
training such a net is very time consuming, running the re-
sulting net on a trace will be very fast. The running of the net
is simply a finite set of multiplications and additions, with no
iterations involved. The computer time required for such a
computation is on the order of milliseconds. Preliminary re-
sults for a reduced set of pulses have been encouraging.102

Work is underway to extend FROG to other wavelength
ranges. Recent efforts have demonstrated FROG at mid-IR
wavelengths.33,35These efforts can be considered straightfor-
ward because autocorrelations have been demonstrated for
many wavelengths. We look forward to seeing such demon-
strations in other ranges as well.

Finally, while the combination of FROG and spectral
interferometry solves many problems that would be impos-
sible to solve with FROG or spectral interferometry alone, it
would be helpful if FROG’s sensitivity and range of pulse
complexities could be extended, so that the spectral interfer-
ometer is not necessary for some applications. Fortunately,
materials studies relevant to other problems, such as optical
communications and computing, will produce new materials
with fast and large nonlinearities and hence will benefit
ultrashort-pulse measurement, as well. As a result, we can
look forward to rapid advances in ultrashort-pulse measure-
ment as they occur elsewhere.
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APPENDIX: EXPRESSIONS FOR THE
MATHEMATICAL-FORM-CONSTRAINT GRADIENT
FOR IMPLEMENTATION OF GENERALIZED
PROJECTIONS IN FROG PULSE RETRIEVAL

In the FROG pulse-retrieval algorithm, it is necessary,
when using the generalized-projections technique, to mini-
mize the functional distance,Z, @Eq. ~16!#. In order to do
this, we compute the gradient ofZ with respect to
E(k11)(tk), wheretk51,...,N. We will thus need to compute
]Z/]E(k11)(tk) for each value oftk . Each of theseN com-
plex quantities is then a component of the complex gradient
vector. In practice, we actually compute the 2N real quanti-
ties, ]Z/@Re$]E(k11)(tk)%# and ]Z/@ Im$]E(k11)(tk)%#. The ex-
pressions for these quantities are given below. Note that, in
this Appendix, we have dropped the superscripts to simplify
the complex equations that result. This can be done because,
throughout this Appendix, the signal field,Esig(t,t), always
indicates thekth iteration for the signal field@Esig

(k)(t i ,t j ) in
the text#, and the pulse field,E(t), always indicates the
k11st iteration for the pulse field~E(k11)(tk) in the text!.
Finally, in these computations, we will make use of the
simple results:

]E~ t i !

] Re$E~ tk!%
5d~ t i2tk!

]E~ t i !

] Im$E~ tk!%
5 id~ t i2tk!,

]E* ~ t i !

] Re$E~ tk!%
5d~ t i2tk!

]E* ~ t i !

] Im$E~ tk!%
52 id~ t i2tk!,

]E~ t i2t j !

] Re$E~ tk!%
5d~ t i2t j2tk!

]E~ t i2t j !

] Im$E~ tk!%
5 id~ t i2t j

2tk!,

]E* ~ t i2t j !

] Re$E~ tk!%
5d~ t i2t j2tk!,

]E* ~ t i2t j !

] Im$E~ tk!%
52 id~ t i2t j2tk!. ~A1!

A. SHG FROG

We consider SHG FROG first because its equations are
the simplest. In SHG FROG, the signal field is given by

Esig
SHG~ t,t!5E~ t !E~ t2t!. ~A2!

So the distance function to be minimized is

ZSHG5 (
i , j 51

N

uEsig~ t i ,t j !2E~ t i !E~ t i2t j !u2. ~A3!

The required gradient is then

]ZSHG

] Re$E~ tk!%
5 (

i , j 51

N S 2
]E~ t i !

] Re$E~ tk!%
E~ t i2t j !

2E~ t i !
]E~ t i2t j !

] Re$E~ tk!%
DsSHG* 1c.c., ~A4!

wheresSHG is the quantity in the absolute-value brackets in
Eq. ~A3!. Using Eq.~A1!, we have
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5 (
i , j 51

N

~2d~ t i2tk!E~ t i2t j !

2E~ t i !d~ t i2t j2tk!!sSHG* 1c.c. ~A5!

Substituting forsSHG

5(
j 51

N

2Esig* ~ tk ,t j !E~ tk2t j !1E* ~ tk!uE~ tk2t j !u2

2Esig* ~ tk1t j ,t j !E~ tk1t j !1E* ~ tk!uE~ tk1t j !u2

1c.c. ~A6!

Similarly,

]ZSHG

] Im$E~ tk!%
5 (

i , j 51

N S 2
]E~ t i !

] Im$E~ tk!%
E~ t i2t j !

2E~ t i !
]E~ t i2t j !

] Im$E~ tk!%
DsSHG* 1c.c. ~A7!

5 i (
i , j 51

N

~2d~ t i2tk!E~ t i2t j !2E~ t i !d~ t i2t j2tk!!

3sSHG* 1c.c. ~A8!

5 i (
j 51

N

2Esig8* ~ tk ,t j !E~ tk2t j !1E* ~ tk!uE~ tk2t j !u2

2Esig8* ~ tk1t j ,t j !E~ tk1t j !1E* ~ tk!uE~ tk1t j !u2

1c.c. ~A9!

B. PG FROG

In PG FROG, the signal field is given by

Esig
PG~ t,t!5E~ t !uE~ t2t!u2. ~A10!

So the distance function to be minimized is

ZPG5 (
i , j 51

N

uEsig~ t i ,t j !2E~ t i !uE~ t i2t j !u2u2. ~A11!

The gradient is then

]ZPG

] Re$E~ tk!%
5 (

i , j 51

N S 2
]E~ t i !

] Re$E~ tk!%
UE~ t i2t j !U2

2E~ t i !
]E~ t i2t j !

] Re$E~ tk!%
E* ~ t i2t j !

2E~ t i !E~ t i2t j !
]E* ~ t i2t j !

] Re$E~ tk!%
DsPG*

1c.c., ~A12!

wheresPG is the quantity in the outer absolute-value brack-
ets in Eq.~A11!. Using Eq.~A1!, we have

5 (
i , j 51

N

~2d~ t i2tk!uE~ t i2t j !u22E~ t i !d~ t i2t j2tk!E*

3~ t i2t j !2E~ t i !E~ t i2t j !d~ t i2t j2tk!!sPG* 1c.c.,

~A13!

5(
j 51

N

2Esig8* ~ tk ,t j !uE~ tk2t j !u21E* ~ tk!uE~ tk2t j !u4

~A14!

2~E~ tk!1E* ~ tk!!~Esig8* ~ tk1t j ,t j !E~ tk1t j !

2uE~ tk!E~ tk1t j !u2!1c.c. ~A15!

and

]ZPG

] Im$E~ tk!%
5 (

i , j 51

N S 2
]E~ t i !

] Im$E~ tk!%
UE~ t i2t j !U2

2E~ t i !
]E~ t i2t j !

] Im$E~ tk!%
E* ~ t i2t j !2E~ t i2t j !

3E~ t i !
]E* ~ t i2t j !

] Im$E~ tk!%
DsPG* 1c.c., ~A16!

5 i (
i , j 51

N

~2d~ t i2tk!uE~ t i2t j !u22E~ t i !d~ t i2t j2tk!

3E* ~ t i2t j !1E~ t i !E~ t i2t j !d~ t i2t j2tk!!sPG*

1c.c., ~A17!

5 i (
j 51

N

~2Esig8* ~ tk ,t j !uE~ tk1t j !u21E* ~ tk!uE~ tk2t j !u4

2~E* ~ tk!2E~ tk!!~Esig8* ~ tk1t j ,t j !E~ tk1t j !

2uE~ tk!E~ tk1t j !u2!!1c.c. ~A18!

C. SD FROG

In SD FROG, the signal field is given by

Esig
SD~ t,t!5E2~ t !E* ~ t2t!. ~A19!

So the distance function to be minimized is

ZSD5 (
i , j 51

N

uEsig~ t i ,t j !2E2~ t i !E* ~ t i2t j !u2 ~A20!

]ZSD

] Re$E~ tk!%
5 (

i , j 51

N S 22E~ t i !
]E~ t i !

] Re$E~ tk!%
E* ~ t i2t j !

2E2~ t i !
]E* ~ t i2t j !

] Re$E~ tk!%
DsSD* 1c.c.,

~A21!

wheresSD is the quantity in the absolute-value brackets in
Eq. ~A20!. Using Eq.~A1!, we have

5 (
i , j 51

N

~22E~ t i !d~ t i2tk!E* ~ t i2t j !2E2~ t i !

3d~ t i2t j2tk!!sSD* 1c.c. ~A22!
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5(
j 51

N

22Esig8* ~ tk ,t j !E~ tk!E* ~ tk2t j !

12E* ~ tk!uE~ tk!E~ tk2t j !u22Esig8* ~ tk1t j ,t j !

3E2~ tk1t j !1E~ tk!uE~ tk1t j !u41c.c. ~A23!

and

]ZSD

] Im$E~ tk!%
5 (

i , j 51

N S 22E~ t i !
]E~ t i !

] Im$E~ tk!%
E* ~ t i2t j !

2E2~ t i !
]E* ~ t i2t j !

] Im$E~ tk!%
DsSD* 1c.c. ~A24!

5 i (
i , j 51

N

~22E~ t i !d~ t i2tk!E* ~ t i2t j !1E2~ t i !

3d~ t i2t j2tk!!sSD* 1c.c. ~A25!

5 i (
j 51

N

22Esig8* ~ tk ,t j !E~ tk!E* ~ tk2t j !

12E* ~ tk!uE~ tk!E~ tk2t j !u21Esig8* ~ tk1t j ,t j !

3E2~ tk1t j !2E~ tk!uE~ tk1t j !u41c.c. ~A26!

D. THG FROG

In THG FROG, the signal field is given by

Esig
THG~ t,t!5E2~ t !E~ t2t!. ~A27!

So the distance function to be minimized is

ZTHG5 (
i , j 51

N

uEsig~ t i ,t j !2E2~ t i !E~ t i2t j !u2. ~A28!

The gradient is then

]ZTHG

] Re$E~ tk!%
5 (

i , j 51

N S 22E~ t i !
]E~ t i !

] Re$E~ tk!%
E~ t i2t j !

2E2~ t i !
]E~ t i2t j !

] Re$E~ tk!%
DsTHG* 1c.c.,

~A29!

wheresTHG is the quantity in the absolute-value brackets in
Eq. ~A28!. Using Eq.~A1!, we have

5 (
i , j 51

N

~22E~ t i !d~ t i2tk!E~ t i2t j !2E2~ t i !

3d~ t i2t j2tk!!sTHG* 1c.c. ~A30!

5(
j 51

N

22Esig8* ~ tk ,t j !E~ tk!E~ tk2t j !12E* ~ tk!

3uE~ tk!E~ tk2t j !u2

2Esig8* ~ tk1t j ,t j !E
2~ tk1t j !

1E* ~ tk!uE~ tk1t j !u41c.c. ~A31!

and

]ZTHG

] Im$E~ tk!%
5 (

i , j 51

N S 22E~ t i !
]E~ t i !

] Im$E~ tk!%
E~ t i2t j !

2E2~ t i !
]E~ t i2t j !

] Im$E~ tk!%
DsTHG* 1c.c.

~A32!

5 i (
i , j 51

N

~22E~ t i !d~ t i2tk!E~ t i2t j !2E2~ t i !

3d~ t i2t j2tk!!sTHG* 1c.c. ~A33!

5 i (
j 51

N

22Esig8* ~ tk ,t j !E~ tk!E~ tk2t j !

12E* ~ tk!uE~ tk!E~ tk2t j !u22Esig8* ~ tk1t j ,t j !

3E2~ tk1t j !1E* ~ tk!uE~ tk1t j !u41c.c. ~A34!
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